OBJECTIVE: This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability. METHODS: Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm(3) and 0.45 g/cm(3)). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests. RESULTS: There was no statistically significant difference in seating force (p = 0.104) or primary stability (pull-out p = 0.171, lever-out p = 0.087) of the two components in the low-density substrate. Similarly, in the high-density substrate, there was no statistically significant difference in the peak pull-out force (p = 0.154) or lever-out moment (p = 0.574) between the designs. However, the PSL component required a significantly higher seating force than the hemispherical cup in the high-density bone analogue (p = 0.006). CONCLUSIONS: Higher seating forces associated with the PSL design may result in inadequate seating and increased risk of component malpositioning or acetabular fracture in the intra-operative setting in high-density bone stock. Our results, if translated clinically, suggest that a purely hemispherical geometry may have an advantage over a peripherally enhanced geometry in high density bone stock. Cite this article: Bone Joint Res 2013;2:264-9.
CITATION STYLE
Antoniades, G., Smith, E. J., Deakin, A. H., Wearing, S. C., & Sarungi, M. (2013). Primary stability of two uncemented acetabular components of different geometry: hemispherical or peripherally enhanced? Bone & Joint Research, 2(12), 264–269. https://doi.org/10.1302/2046-3758.212.2000193
Mendeley helps you to discover research relevant for your work.