(Mis)interpreting supernovae observations in a lumpy universe

101Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Light from 'point sources' such as supernovae is observed with a beam width of the order of the sources' size - typically less than 1au. Such a beam probes matter and curvature distributions that are very different from coarse-grained representations in N-body simulations or perturbation theory, which are smoothed on scales much larger than 1au. The beam typically travels through unclustered dark matter and hydrogen with a mean density much less than the cosmic mean, and through dark matter haloes and hydrogen clouds. Using N-body simulations, as well as a Press-Schechter approach, we quantify the density probability distribution as a function of beam width and show that, even for Gpc-length beams of 500kpc diameter, most lines of sight are significantly underdense. From this we argue that modelling the probability distribution for au-diameter beams is absolutely critical. Standard analyses predict a huge variance for such tiny beam sizes, and non-linear corrections appear to be non-trivial. It is not even clear whether underdense regions lead to dimming or brightening of sources, owing to the uncertainty in modelling the expansion rate which we show is the dominant contribution. By considering different reasonable approximations which yield very different cosmologies, we argue that modelling ultra-narrow beams accurately remains a critical problem for precision cosmology. This could appear as a discordance between angular diameter and luminosity distances when comparing supernova observations to baryon acoustic oscillations or cosmic microwave background distances. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Cite

CITATION STYLE

APA

Clarkson, C., Ellis, G. F. R., Faltenbacher, A., Maartens, R., Umeh, O., & Uzan, J. P. (2012). (Mis)interpreting supernovae observations in a lumpy universe. Monthly Notices of the Royal Astronomical Society, 426(2), 1121–1136. https://doi.org/10.1111/j.1365-2966.2012.21750.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free