Physicochemical Properties and Hypolipidemic Activity of Dietary Fiber from Rice Bran Meal Obtained by Three Oil-Production Methods

4Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

This study investigated the effects of three oil production methods on the physicochemical properties of dietary fiber from rice bran flour, and the hypolipidemic effects of the dietary fibers were investigated in vitro and in vivo. The particle size results showed that the organic-solvent-impregnated rice bran meal dietary fiber (N-RBDF) had the smallest average particle size and the aqueous enzymatic rice bran meal dietary fiber (E-RBDF) had the narrowest particle size distribution. Scanning electron microscopy (SEM) results demonstrated that all three kinds of rice bran meal dietary fibers (RBDFs) were irregularly flaky. Fourier transform infrared spectroscopy (FT-IR) results revealed that the three RBDFs had similar reactive groups, and X-ray diffraction (XRD) results indicated that all three RBDFs were cellulose type I crystals. The results of thermogravimetric analysis showed that the lignin content of N-RBDF was significantly lower than that of the other two. Among the three kinds of RBDFs, E-RBDF had higher water retention capacity, swelling capacity, oil holding capacity, and adsorption capacity for cholesterol and sodium bile salts. The results of experimental studies in hyperlipidemic rats showed that all three kinds of RBDFs significantly reduced triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) and elevated high-density lipoprotein cholesterol (HDL-C) in the serum of hyperlipidemic rats; they also significantly lowered malondialdehyde (MDA) and elevated total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities in the livers of rats. In addition, all three kinds of RBDFs decreased aminotransferase (ALT) and aminotransferase (AST) activity in serum and also improved liver steatosis and reduced atherosclerosis index (AI) in rats with hyperlipidemia. Our study provides a reference for the development and utilization of rice bran meal and the application of rice bran meal dietary fiber in food processing.

Cite

CITATION STYLE

APA

Zhu, R., Tan, S., Wang, Y., Zhang, L., & Huang, L. (2023). Physicochemical Properties and Hypolipidemic Activity of Dietary Fiber from Rice Bran Meal Obtained by Three Oil-Production Methods. Foods, 12(19). https://doi.org/10.3390/foods12193695

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free