Accretion disks whose matter follows eccentric orbits can arise in multiple astrophysical situations. Unlike circular orbit disks, the vertical gravity in eccentric disks varies around the orbit. In this paper, we investigate some of the dynamical effects of this varying gravity on the vertical structure using 1D hydrodynamics simulations of individual gas columns assumed to be mutually noninteracting. We find that time-dependent gravitational pumping generically creates shocks near pericenter; the energy dissipated in the shocks is taken from the orbital energy. Because the kinetic energy per unit mass in vertical motion near pericenter can be large compared to the net orbital energy, the shocked gas can be heated to nearly the virial temperature, and some of it becomes unbound. These shocks affect larger fractions of the disk mass for larger eccentricity and/or disk aspect ratio. If the orbit can be maintained despite orbital energy loss, diverse initial structures evolve in only a few orbits so that they follow a limit cycle characterized by a low-entropy midplane and a much higher entropy outer layer. In favorable cases (such as the tidal disruption of stars by supermassive black holes), these effects could be a potentially important energy dissipation and mass-loss mechanism.
CITATION STYLE
Ryu, T., Krolik, J., & Piran, T. (2021). The Impact of Shocks on the Vertical Structure of Eccentric Disks. The Astrophysical Journal, 920(2), 130. https://doi.org/10.3847/1538-4357/ac185a
Mendeley helps you to discover research relevant for your work.