To determine the influence of continuous hypoxia on body weight, food intake, hepatic glycogen, circulatory glucose, insulin, glucagon, leptin, and corticosterone, and the involvement of the corticotropin-releasing factor receptor type 1 (CRFR1) in modulation of these hormones, rats were exposed to a simulated altitude of 5 km (∼10.8% O2) in a hypobaric chamber for 1, 2, 5, 10, and 15 d. Potential involvement of CRFR1 was assessed through five daily sc injections of a CRFR1 antagonist (CP-154,526) prior to hypoxia. Results showed that the levels of body weight, food intake, blood glucose, and plasma insulin were significantly reduced; the content of hepatic glycogen initially and transiently declined, whereas the early plasma glucagon and leptin remarkably increased; plasma corticosterone was markedly increased throughout the hypoxic exposure of 1-15 d. Compared with hypoxia alone, CRFR1 antagonist pretreatment in the hypoxic groups prevented the rise in corticosterone, whereas the levels of body weight and food intake were unchanged. At the same time, the reduction in blood glucose was greater and the pancreatic glucose was increased, plasma insulin reverted toward control, and plasma glucagon decreased. In summary, prolonged hypoxia reduced body weight, food intake, blood glucose, and plasma insulin but transiently enhanced plasma glucagon and leptin. In conclusion, CRFR1 is potentially involved in the plasma insulin reduction and transient glucagon increase in hypoxic rats. Copyright © 2007 by The Endocrine Society.
CITATION STYLE
Chen, X. Q., Dong, J., Niu, C. Y., Fan, J. M., & Du, J. Z. (2007). Effects of hypoxia on glucose, insulin, glucagon, and modulation by corticotropin-releasing factor receptor type 1 in the rat. Endocrinology, 148(7), 3271–3278. https://doi.org/10.1210/en.2006-1224
Mendeley helps you to discover research relevant for your work.