The application of the Maximum Entropy (ME) principle leads to a minimum of the Mutual Information (MI), I(X,Y), between random variables X,Y, which is compatible with prescribed joint expectations and given ME marginal distributions. A sequence of sets of joint constraints leads to a hierarchy of lower MI bounds increasingly approaching the true MI. In particular, using standard bivariate Gaussian marginal distributions, it allows for the MI decomposition into two positive terms: the Gaussian MI (Ig), depending upon the Gaussian correlation or the correlation between 'Gaussianized variables', and a non-Gaussian MI (Ing), coinciding with joint negentropy and depending upon nonlinear correlations. Joint moments of a prescribed total order p are bounded within a compact set defined by Schwarz-like inequalities, where Ing grows from zero at the 'Gaussian manifold' where moments are those of Gaussian distributions, towards infinity at the set's boundary where a deterministic relationship holds. Sources of joint non-Gaussianity have been systematized by estimating Ing between the input and output from a nonlinear synthetic channel contaminated by multiplicative and non-Gaussian additive noises for a full range of signal-to-noise ratio (snr) variances. We have studied the effect of varying snr on Ig and Ing under several signal/noise scenarios. © 2012 by the authors.
CITATION STYLE
Pires, C. A. L., & Perdigão, R. A. P. (2012). Minimum mutual information and non-gaussianity through the maximum entropy method: Theory and properties. Entropy, 14(6), 1103–1126. https://doi.org/10.3390/e14061103
Mendeley helps you to discover research relevant for your work.