Telomere-associated proteins add deoxynucleotides to terminal proteins during replication of the telomeres of linear chromosomes and plasmids in Streptomyces

10Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Typical telomeres of linear chromosomes and plasmids of soil bacteria Streptomyces consist of tightly packed palindromic sequences with a terminal protein ('TP') covalently attached to the 5′ end of the DNA. Replication of these linear replicons is initiated internally and proceeds bidirectionally toward the telomeres, which leaves single-strand overhangs at the 3′ ends. These overhangs are filled by DNA synthesis using the TPs as the primers ('end patching'). The gene encoding for typical TP, tpg, forms an operon with tap, encoding an essential telomere-associated protein, which binds TP and the secondary structures formed by the 3′ overhangs. Previously one of the two translesion synthesis DNA polymerases, DinB1 or DinB2, was proposed to catalyze the protein-primed synthesis. However, using an in vitro end-patching system, we discovered that Tpg and Tap alone could carry out the protein-primed synthesis to a length of 13 nt. Similarly, an 'atypical' terminal protein, Tpc, and its cognate telomere-associated protein, Tac, of SCP1 plasmid, were sufficient to achieve protein-primed synthesis in the absence of additional polymerase. These results indicate that these two telomere-associated proteins possess polymerase activities alone or in complex with the cognate TPs.

Cite

CITATION STYLE

APA

Yang, C. C., Tseng, S. M., & Chen, C. W. (2015). Telomere-associated proteins add deoxynucleotides to terminal proteins during replication of the telomeres of linear chromosomes and plasmids in Streptomyces. Nucleic Acids Research, 43(13), 6373–6383. https://doi.org/10.1093/nar/gkv302

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free