High-Power Laser Deposition of Chitosan Polymers: Medical and Environmental Applications

9Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

High-power laser irradiation interaction with natural polymers in biocomposites and Laser-Induced Chitin Deacetylation (LICD) was studied in this work, in order to produce thin films consisting of chitosan composite. The new method can lead to a cutting-edge technology, as a response to the concern regarding the accumulation of “natural biological waste” and its use. The process consists of high-power laser irradiation applied on oyster shells as the target and deposition of the ablated material on different substrates. The obtained thin films we analyzed by FTIR, UV-VIS and LIF spectroscopy, as well as SEM-EDS and AFM. All the results indicated that chitin was extracted from the shell composite material and converted to chitosan by deacetylation. It was, thus, evidenced that chemical transformation in the chitin polymer side-chain occurs during laser irradiation of the oyster shell and in the resulted plasma plume of ablation. The numerical simulation in COMSOL performed for this study anticipates and confirms the experimental results of chitin deacetylation, also providing information about the conditions required for the physico-chemical processes involved. The high sorption properties of the thin films obtained by a LICD procedure is evidenced in the study. This quality suggests that they should be used in transdermal patch construction due to the known hemostatic and antibacterial effects of chitosan. The resulting composite materials, consisting of the chitosan thin films deposited on hemp fabric, are also suitable for microfilters in water decontamination or in other filtering processes.

Cite

CITATION STYLE

APA

Cocean, G., Cocean, A., Postolachi, C., Garofalide, S., Bulai, G., Munteanu, B. S., … Gurlui, S. (2022). High-Power Laser Deposition of Chitosan Polymers: Medical and Environmental Applications. Polymers, 14(8). https://doi.org/10.3390/polym14081537

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free