Objectives: The objective was to build and test an automated, interactive educational system to teach adults how to install a child restraint system (CRS) into a vehicle seat. Methods: The automated feedback system (AFS) consisted of a mockup vehicle fixture, convertible CRS, and doll. Sensors were implemented into the equipment so that forward-facing (FF) CRS installation errors could be detected. An interactive display monitor guided users through the CRS installation process and alerted them when steps were done incorrectly. Sixty adult volunteers were recruited and randomized into either the treatment group or the control group. The treatment group used the AFS to guide them through a practice installation. The control group also completed a practice installation using the same equipment fixture without the feedback feature turned on; they only had standard printed instruction manuals to guide their tasks. Then, participants from both groups completed a second CRS installation in a real vehicle with standard instruction manuals only. The frequencies and types of errors in all the installations were evaluated by a Child Passenger Safety Technician (CPST). Error rates were compared between the treatment and control groups using lower-tailed t-tests and Pearson’s chi-square tests. Error rates were evaluated considering minor and serious errors together and also considering serious errors alone. Results: Compared to the control group, participants who trained with the AFS exhibited fewer overall errors (minor and serious) in their fixture installations (p < 0.0001) as well as their follow-up vehicle installations (p < 0.0001). Specifically, participants in the treatment group had fewer errors in choosing an installation method, locking the seat belt (SB), tightening the SB or lower anchors (LA), and tightening the harness (p = 0.0002, p = 0.0003, p = 0.0084, and p = 0.0098, respectively, compared to control group during follow-up vehicle installations). The treatment group also performed significantly better than the control group when only serious errors were considered. Conclusions: An automated feedback system is an effective way to teach basic CRS installation skills to users.
CITATION STYLE
Mansfield, J. A., & Bolte, J. H. (2020). System providing automated feedback improves task learning outcomes during child restraint system (CRS) installations. Traffic Injury Prevention, 21(8), 575–580. https://doi.org/10.1080/15389588.2020.1829607
Mendeley helps you to discover research relevant for your work.