Lantibiotics are ribosomally synthesized peptide antibiotics composed of an N-terminal leader peptide that is cleaved to yield the active antibacterial peptide. Significant advancements in molecular tools that promote the study of lantibiotic biosynthesis can be used in Streptococcus mutans. Herein, we further our understanding of leader peptide sequence and core peptide structural requirements for the biosynthesis and transport of the lantibiotic mutacin 1140. Our study on mutacin 1140 biosynthesis shows a dedicated secondary cleavage site within the leader peptide and the dependency of transport on core peptide posttranslational modifications (PTMs). The secondary cleavage site on the leader peptide is found at the -9 position, and secondary cleavage occurs before the core peptide is transported out of the cell. The coordinated cleavage at the -9 position was absent in a lanT deletion strain, suggesting that the core peptide interaction with the LanT transporter enables uniform cleavage at the -9 position. Following transport, the LanP protease was found to be tolerant to a wide variety of amino acid substitutions at the primary leader peptide cleavage site, with the exception of arginine at the -1 position. Several leader and core peptide mutations produced core peptide variants that had intermediate stages of PTM enzyme modifications, supporting the concept that PTM enzyme modifications, secondary cleavage, and transport are occurring in a highly coordinated fashion.
CITATION STYLE
Escano, J., Stauffer, B., Brennan, J., Bullock, M., & Smith, L. (2015). Biosynthesis and transport of the lantibiotic mutacin 1140 produced by Streptococcus mutans. Journal of Bacteriology, 197(7), 1173–1184. https://doi.org/10.1128/JB.02531-14
Mendeley helps you to discover research relevant for your work.