In this study, graphene was rapidly grown by chemical vapor deposition using a liquid cell for supplying methanol as a carbon source of graphene. To realize the rapid growth, methanol which is carbon-contained organic solvent was used instead of methane gas, a widely used carbon source for graphene growth. The graphene grown with the growth time as a variable was transferred to a SiO2/Si substrate with an oxide thickness of 300 nm to confirm whether it was grown with full coverage with an optical microscope. The results confirmed a full coverage in 0.5 min of growth. The Raman spectra also confirmed the G-peak position at 1585.0 cm−1 and an intensity ratio of 2D/G at 2.3 or higher. Concerning electrical transport characteristics, at an induced carrier density of 1 × 1012 cm−2, the hole (µh) and electron (µe) mobilities were 1524 cm2 V−1 s−1 and 1528 cm2 V−1 s−1, respectively. Thus, our study confirmed that high-quality, large-area graphene can be grown within 0.5 min.
CITATION STYLE
Lee, I., Nam, J., Park, S. J., Bae, D. J., Hong, S., & Kim, K. S. (2021). Rapid chemical vapor deposition of graphene using methanol as a precursor. Carbon Letters, 31(2), 307–313. https://doi.org/10.1007/s42823-020-00166-6
Mendeley helps you to discover research relevant for your work.