Background: The SALL4/Sall4 is constitutively expressed in human and mice. SALL4 mRNA could be used as a marker for the diagnosis of different types of cancers. On the other hand, chrysin has diverse biological properties. Objectives: In the present study, the effect of the chrysin was investigated on the CT26 colon cancer in vitro and in vivo. Furthermore, the expression levels of the stem cell markers; sall4 and Bax was analyzed, as well. Materials and Methods: The cytotoxic effects and the type of cell death induced by chrysin were evaluated using a number of biological assays. The apoptotic pathway was examined by caspase-3and caspase-9 assay. The in vivo antitumor efficacy of chrysin on transplanted CT26 tumor cells in BALB/c mice was investigated. In addition, mRNA expression of sall4, Bax was analyzed with RT-PCR. Results: MTT assay and morphological characteristics showed that chrysin exerted a cytotoxic effect on CT26 cells in a dose dependent manner with IC50= 80 μg.mL-1. The biological assays have indicated that chrysin administrated cytotoxicity on colon cancer cells through recruitment of the apoptosis. Caspase-3 and caspase-9 colorimetric assays, in addition to Bax expression analysis, have indicated the involvement of intrinsic apoptotic pathway in the cytotoxic effect of the chrysin. The in vivo assay revealed a remarkable reduction of the colon tumor volume in treated mice (8, 10 mg.kg-1) as compared to the untreated mice. RT-PCR elucidated that chrysin attenuated tumor volume through down regulation of the sall4 and up-regulation of the Bax. Conclusions: It was demonstrated that chrysin accomplishes anti-cancer effect on colon cancer cells via induction of the apoptosis and attenuation of the sall4 the expression. These findings introduce chrysin as an efficient apoptosis based therapeutic agent against colon cancer.
CITATION STYLE
Bahadori, M., Baharara, J., & Amini, E. (2016). Anticancer properties of chrysin on colon cancer cells, in vitro and in vivo with modulation of caspase-3, -9, bax and sall4. Iranian Journal of Biotechnology, 14(3), 117–124. https://doi.org/10.15171/ijb.1374
Mendeley helps you to discover research relevant for your work.