Machine Learning and Bagging to Predict Midterm Electricity Consumption in Saudi Arabia

2Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Electricity is widely regarded as the most adaptable form of energy and a major secondary energy source. However, electricity is not economically storable; therefore, the power system requires a continuous balance of electricity production and consumption to be stable. The accurate and reliable assessment of electrical energy consumption enables planning prospective power-producing systems to satisfy the expanding demand for electrical energy. Since Saudi Arabia is one of the top electricity consumers worldwide, this paper proposed an electricity consumption prediction model in Saudia Arabia. In this work, the authors obtained a never-before-seen dataset of Saudi Arabia’s electricity consumption for a span of ten years. The dataset was acquired solely by the authors from the Saudi Electrical Company (SEC), and it has further research potential that far exceeds this work. The research closely examined the performance of ensemble models and the K* model as novel models to predict the monthly electricity consumption for eighteen service offices from the Saudi Electrical Company dataset, providing experiments on a new electricity consumption dataset. The global blend parameters for the K* algorithm were tuned to achieve the best performance for predicting electricity consumption. The K* model achieved a high accuracy, and the results of the correlation coefficient (CC), mean absolute percentage error (MAPE), root mean squared percentage error (RMSPE), mean absolute error (MAE), and root mean squared error (RMSE) were 0.9373, 0.1569, 0.5636, 0.016, and 0.0488, respectively. The obtained results showed that the bagging ensemble model outperformed the standalone K* model. It used the original full dataset with K* as the base classifier, which produced a 0.9383 CC, 0.1511 MAPE, 0.5333 RMSPE, 0.0158 MAE, and 0.0484 RMSE. The outcomes of this work were compared with a previous study on the same dataset using an artificial neural network (ANN), and the comparison showed that the K* model used in this study performed better than the ANN model when compared with the standalone models and the bagging ensemble.

Cite

CITATION STYLE

APA

Musleh, D. A., & Al Metrik, M. A. (2023). Machine Learning and Bagging to Predict Midterm Electricity Consumption in Saudi Arabia. Applied System Innovation, 6(4). https://doi.org/10.3390/asi6040065

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free