This experimental study investigated the utility of a pitch-based carbon fiber-mortar composite, which could replace polyacrylonitrile carbon fiber, as a thin overlay for concrete pavement. The objective was to explore the utility of the low-cost carbon fiber, which was produced via a melt-blown method, i.e., blowing at high pressure after melting the pitch residue following crude oil purification. The mechanical properties, durability, and thermal properties of the pitch-based carbon fiber were explored to maximize strength, durability, functionality, and economy by using micro-sized fibers that are closer in size to the constituents of cementitious materials. Melt-blown pitch-based carbon fiber has low individual fiber strength but generally excellent thermal conductivity. Thermal conductivity tests were conducted on mortar panels (560 mm × 560 mm; thickness = 25, 40 or 60 mm) containing 0, 0.4, 0.5 or 0.6 wt % pitch-based carbon fiber. The absolute thermal conductivity tended to improve with higher wt % of pitch-based carbon fiber, in the range of 9~11W/°C. However, thermal conductivity tended to be lower under the 0.6 wt % condition, possibly due to the effect of dispersion. Compressive strength degradation was tested over 350 cycles of freezing and thawing: the strength of the 0.4, 0.5 or 0.6 wt % samples was 91, 89, and 82%, respectively, relative to the control specimen (0 wt %). Thus, all specimens had a compressive strength of 80% or more after 350 cycles compared to the control specimen. To test the adhesion performance for new thin overlays and old concrete surfaces, concrete cylinders (100 × 200 mm; thickness = 10 mm) were cut at an angle of 46 degrees, and the pitch-based carbon fiber-mortar composite was used to bond the various sections. The bond strength of the test specimens was more than twice that of the reference specimen.
CITATION STYLE
Lee, J. S., & Rhee, I. (2019). Functional properties of a pitch-based carbon fiber-mortar composite as a thin overlay for concrete pavement. Materials, 12(7). https://doi.org/10.3390/ma12172753
Mendeley helps you to discover research relevant for your work.