Although face masks have been used for over a century to provide protection against airborne pathogens and pollutants, close scrutiny of their effectiveness has peaked in the past two years in response to the COVID-19 pandemic. The simplicity of face masks belies the complexity of the physical phenomena that determine their effectiveness as a defense against airborne infections. This complexity is rooted in the fact that the effectiveness of face masks depends on the combined effects of respiratory aerodynamics, filtration flow physics, droplet dynamics and their interactions with porous materials, structural dynamics, physiology, and even human behavior. At its core, however, the face mask is a flow-handling device, and in the current review, we take a flow physics-centric view of face masks and the key phenomena that underlie their function. We summarize the state of the art in experimental measurements, as well as the growing body of computational studies that have contributed to our understanding of the factors that determine the effectiveness of face masks. The review also lays out some of the important open questions and technical challenges associated with the effectiveness of face masks.
CITATION STYLE
Mittal, R., Breuer, K., & Seo, J. H. (2023, January 19). The Flow Physics of Face Masks. Annual Review of Fluid Mechanics. Annual Reviews Inc. https://doi.org/10.1146/annurev-fluid-120720-035029
Mendeley helps you to discover research relevant for your work.