Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice

Citations of this article
Mendeley users who have this article in their library.

You may have access to this PDF.


Physical rotations and translations are the basic constituents of navigation behavior, yet there is mixed evidence about their relative importance for complex navigation in virtual reality (VR). In the present experiment, 24 participants wore head-mounted displays and performed navigational search tasks with rotations/translations controlled by physical motion or joystick. As expected, physical walking showed performance benefits over joystick navigation. Controlling translations via joystick and rotations via physical rotations led to better performance than joystick navigation, and yielded almost comparable performance to actual walking in terms of search efficiency and time. Walking resulted, however, in increased viewpoint changes and shorter navigation paths, suggesting a rotation/translation tradeoff and different navigation strategies. While previous studies have emphasized the importance of full physical motion via walking (Ruddle & Lessels, 2006, 2009), our data suggests that considerable navigation improvements can already be gained by allowing for full-body rotations, without the considerable cost, space, tracking, and safety requirements of free-space walking setups. © 2010 Springer-Verlag Berlin Heidelberg.




Riecke, B. E., Bodenheimer, B., McNamara, T. P., Williams, B., Peng, P., & Feuereissen, D. (2010). Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 6222 LNAI, pp. 234–247).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free