Human-induced land use changes and phosphorus limitation affect soil microbial biomass and ecosystem stoichiometry

1Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

Abstract

Soil and microbial biomass carbon (C), nitrogen (N), and phosphorus (P) play an important role in soil nutrient dynamics in biogeochemical cycles of terrestrial ecosystems. However, increased human activities as a result of agricultural intensification on soil nutrients and microbial C:N:P stoichiometry are poorly understood in this fragile forest-savanna transition agroecosystem. This study aimed to (i) assess soil and microbial C, N, and P stoichiometry in different land use systems, and (ii) examine the effect of soil and microbial C, N, and P stoichiometry on soils susceptible to human-induced land use changes. A total of 82 composite soil samples at a depth of 0-20 cm were sampled from forest, savanna, grassland, fallow and cropland for laboratory analysis. The results revealed that the concentrations of C, N, and P were low in Fallow and Cropland compared to other land use systems. Analysis of variance in microbial C, N, and P stoichiometric ratios revealed a significant decreasing tendency compared to soil C:N, C:P and N:P ratios with no statistical significance (p < 0.05). The C:P and N:P ratios were low compared to the C:N ratio in land uses. A significant positive correlation was observed between MBC and MBN (0.95; p < 0.01), and with C and N (0.69; p < 0.01). There were significant interactive effects of land use on soil and microbial variables. The estimated microbial C:N:P stoichiometric ratios (21:2:1) were well constrained in the study area. The transition from Forest to Cropland resulted in 64%, 52%, and 71% reduction in C, N, and P, respectively. This implies that phosphorus is the main factor limiting productivity. The low availability of phosphorus in these tropical soils may have resulted in low C:P and N:P ratios. Therefore, we conclude that our results highlight the importance of phosphorus limitation on ratios of microbial C:P and N:P in landuse systems. Nutrient inputs such as fertilizers, manure and crop residues should be applied to croplands to improve soil and microbial C, N and P levels. Further, effects of land use on soil nutrient status and stoichiometry at 1-meter depth will be considered in our future work.

Cite

CITATION STYLE

APA

Awoonor, J. K., Dogbey, B. F., & Salis, I. (2023). Human-induced land use changes and phosphorus limitation affect soil microbial biomass and ecosystem stoichiometry. PLoS ONE, 18(8 August). https://doi.org/10.1371/journal.pone.0290687

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free