Despite their pronounced importance for oxide-based photochemistry, optoelectronics and photovoltaics, only fairly little is known about the polaron lifetimes and binding energies. Polarons represent a crucial intermediate step populated immediately after dissociation of the excitons formed in the primary photoabsorption process. Here we present a novel approach to studying photoexcited polarons in an important photoactive oxide, ZnO, using infrared (IR) reflection-absorption spectroscopy (IRRAS) with a time resolution of 100 ms. For well-defined (10-10) oriented ZnO single-crystal substrates, we observe intense IR absorption bands at around 200 meV exhibiting a pronounced temperature dependence. On the basis of first-principles-based electronic structure calculations, we assign these features to hole polarons of intermediate coupling strength.
CITATION STYLE
Sezen, H., Shang, H., Bebensee, F., Yang, C., Buchholz, M., Nefedov, A., … Wöll, C. (2015). Evidence for photogenerated intermediate hole polarons in ZnO. Nature Communications, 6. https://doi.org/10.1038/ncomms7901
Mendeley helps you to discover research relevant for your work.