Roots of sunflower plants (Helianthus annuus L. var. Mammoth Russian) subjected to L12:D12, L18:D6, and L12:D12 followed by continuous light all display rhythms of about 12 hours for glutamine synthetase (GS) activity (transferase reaction) with one peak in the ;light phase' and one in the ;dark phase.' Root energy charge (EC = ATP+(1/2)ADP/ATP+ADP+AMP) is directly correlated with GS, but the GS rhythm is better explained as the result of a rhythmic adenine nucleotide ratio (ATP/ADP+AMP) that regulates enzyme activity through allosteric modification. When L12:D12 plants are subjected to free-running conditions in continuous darkness, only diurnal rhythms for GS and EC, with peaks in the dark phase, remain. The 12-hour root rhythms for GS and EC appear to be composed of two alternating rhythms, one a diurnal, light-dependent, incompletely circadian light phase rhythm and the other a light-independent, circadian dark phase rhythm.Only glutamine, of the root amino acids, displays cyclical changes in concentration, maintaining under all conditions a 12-hour rhythm that is consistently synchronized with, but nearly always inversely correlated with, GS and EC rhythms.
CITATION STYLE
Knight, T. J., & Weissman, G. S. (1982). Rhythms in Glutamine Synthetase Activity, Energy Charge, and Glutamine in Sunflower Roots. Plant Physiology, 70(6), 1683–1688. https://doi.org/10.1104/pp.70.6.1683
Mendeley helps you to discover research relevant for your work.