Objectives: To develop a deep learning–based pulmonary vessel segmentation algorithm (DLVS) from noncontrast chest CT and to investigate its clinical implications in assessing vascular remodeling of chronic obstructive lung disease (COPD) patients. Methods: For development, 104 pulmonary CT angiography scans (49,054 slices) using a dual-source CT were collected, and spatiotemporally matched virtual noncontrast and 50-keV images were generated. Vessel maps were extracted from the 50-keV images. The 3-dimensional U-Net-based DLVS was trained to segment pulmonary vessels (with a vessel map as the output) from virtual noncontrast images (as the input). For external validation, vendor-independent noncontrast CT images (n = 14) and the VESSEL 12 challenge open dataset (n = 3) were used. For each case, 200 points were selected including 20 intra-lesional points, and the probability value for each point was extracted. For clinical validation, we included 281 COPD patients with low-dose noncontrast CTs. The DLVS-calculated volume of vessels with a cross-sectional area < 5 mm2 (PVV5) and the PVV5 divided by total vessel volume (%PVV5) were measured. Results: DLVS correctly segmented 99.1% of the intravascular points (1,387/1,400) and 93.1% of the extravascular points (1,309/1,400). The areas-under-the receiver-operating characteristic curve (AUROCs) were 0.977 and 0.969 for the two external validation datasets. For the COPD patients, both PPV5 and %PPV5 successfully differentiated severe patients whose FEV1 < 50 (AUROCs; 0.715 and 0.804) and were significantly correlated with the emphysema index (Ps
CITATION STYLE
Nam, J. G., Witanto, J. N., Park, S. J., Yoo, S. J., Goo, J. M., & Yoon, S. H. (2021). Automatic pulmonary vessel segmentation on noncontrast chest CT: deep learning algorithm developed using spatiotemporally matched virtual noncontrast images and low-keV contrast-enhanced vessel maps. European Radiology, 31(12), 9012–9021. https://doi.org/10.1007/s00330-021-08036-z
Mendeley helps you to discover research relevant for your work.