Plants possess abiotic stress responses that alter photosynthetic metabolism under salinity stress. The objective of this study was to identify the stomatal and metabolic changes associated with photosynthetic responses to NaCl stress in perennial ryegrass (Lolium perenne). Five-week-old seedlings of two perennial ryegrass genotypes, PI 516605 (salt-sensitive) and BARLP 4317 (salt-tolerant), were subjected to 0 and 250 mM NaCl for 8 days. The salt tolerance in perennial ryegrass was significantly associated with leaf relative water content (RWC) and photosyn-thetic capacity through the maintenance of greater metabolic activities under prolonged salt stress. BARLP 4317 maintained greater turf quality, RWC, and stomatal limitations but a lower level of lipid peroxidation [malondialde-hyde (MDA)] and intercellular CO2 concentration than PI 516605 at 8 days after treatment (DAT). Ribulose-1, 5-bisphosphate carboxylase:oxygenase (Rubisco) activity and activation state, transcriptional level of rbcL gene, and expression level of Rubisco large subunit (LSU) declined in stressed perennial ryegrass but were higher in salt-tolerant genotype at 8 DAT. Furthermore, photosynthetic rate increased linearly with increasing Rubisco activity, Rubisco activation state, and RWC in both genotypes. The same linear relationship was found between RWC and Rubisco activity. However, MDA content decreased linearly with increasing RWC in both genotypes. Salinity-induced inhibition of photosynthesis in perennial ryegrass was mainly the result of stomatal limitation during early salt stress and metabolic limitation associated with the inhibition of RWC, activity of Rubisco, expression level of rbcL gene, and LSU under a prolonged period of severe salinity.
CITATION STYLE
Hu, T., Yi, H., Hu, L., & Fu, J. (2013). Stomatal and metabolic limitations to photosynthesis resulting from NaCl stress in perennial ryegrass genotypes differing in salt tolerance. Journal of the American Society for Horticultural Science, 138(5), 350–357. https://doi.org/10.21273/jashs.138.5.350
Mendeley helps you to discover research relevant for your work.