Cardiovascular disease is currently one of the diseases with high morbidity and mortality worldwide. One of the main types is coronary artery disease (CAD), which occurs when one or more of the three main arteries, the left anterior descending (LAD) artery, the left circumflex (LCX) artery, and the right coronary artery (RCA), are narrowed. In this paper, we introduce a computer-aided diagnosis model, which uses the k-nearest neighbor (KNN)-based whale optimization algorithm (WOA) for feature selection and combines stacking model for CAD diagnosis and prediction. In WOA, the values in the solution vectors are all continuous, and a threshold is set for binary-conversion to obtain the optimal feature subsets of each main coronary artery. Then we develop a two-layer stacking model based on the selected feature subsets to diagnosis LAD, LCX and RCA. By the proposed method, we select 17 features for each main artery diagnosis, and the classification accuracy on LAD, LCX, and RCA test sets is 89.68, 88.71 and 85.81%, respectively. On the Z-Alizadeh Sani dataset, we compare the proposed feature selection method with other metaheuristics and compare the performance of WOA based on different wrappers. The experimental results show that, the KNN-based WOA method selects the optimal feature subsets, and the classification performance of the stacking model is better than other machine learning algorithms.
CITATION STYLE
Jin, Z., & Li, N. (2022). Diagnosis of each main coronary artery stenosis based on whale optimization algorithm and stacking model. Mathematical Biosciences and Engineering, 19(5), 4568–4591. https://doi.org/10.3934/mbe.2022211
Mendeley helps you to discover research relevant for your work.