Reelin is a large secreted protein that controls cortical layering by signaling through the very low density lipoprotein receptor and apolipoprotein E receptor 2, thereby inducing tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1) and suppressing tau phosphorylation in vivo. Here we show that binding of Reelin to these receptors stimulates phosphatidylinositol 3-kinase, resulting in activation of protein kinase B and inhibition of glycogen synthase kinase 3β. We present genetic evidence that this cascade is dependent on apolipoprotein E receptor 2, very low density lipoprotein receptor, and Dab1. Reelin-signaling components are enriched in axonal growth cones, where tyrosine phosphorylation of Dab1 is increased in response to Reelin. These findings suggest that Reelin-mediated phosphatidylinositol 3-kinase signaling in neuronal growth cones contributes to final neuron positioning in the mammalian brain by local modulation of protein kinase B and glycogen synthase kinase 3β kinase activities.
CITATION STYLE
Beffert, U., Morfini, G., Bock, H. H., Reyna, H., Brady, S. T., & Herz, J. (2002). Reelin-mediated signaling locally regulates protein kinase B/Akt and glycogen synthase kinase 3β. Journal of Biological Chemistry, 277(51), 49958–49964. https://doi.org/10.1074/jbc.M209205200
Mendeley helps you to discover research relevant for your work.