A nanostructured solid solution catalyst CeZrK/rGO for soot oxidation in catalyzed diesel particulate filter was synthesized using the dipping method. The reduced graphene oxide (rGO) was used as the catalyst carrier, and CeO2, ZrO2, and K2O were mixed with the molar ratio of 5:1:1, 5:2:2 and 5:3:3, which were referred to as Ce5Zr1K1/rGO, Ce5Zr2K2/rGO, and Ce5Zr3K3/rGO, respec-tively. The structure, morphology and catalytic activity of the CeZrK/rGO nanocomposites were thoroughly investigated and the results show that the CeZrK/rGO nanocomposites have nanoscale pore structure (36.1–36.9 nm), high-dispersion quality, large specific surface area (117.2–152.4 m2/g), small crystallite size (6.7–8.3 nm), abundant oxygen vacancies and superior redox capacity. The 50% soot conversion temperatures of Ce5Zr1K1/rGO, Ce5Zr2K2/rGO, and Ce5Zr3K3/rGO under tight contact condition were decreased to 352◦C, 339◦C and 358◦C respectively. The high catalytic activity of CeZrK/rGO nanocomposites can be ascribed to the following factors: the doping of Zr and K ions causes the nanocrystalline phase formation in CeZrK solid solutions, reduces the crystallite size, generates abundant oxygen vacancies and improves redox capacity; the rGO as a carrier provides a large specific surface area, thereby improving the contact between soot and catalyst.
CITATION STYLE
Wu, G., Tang, K., Wu, D., Li, Y., & Li, Y. (2021). Experimental evaluation on the catalytic activity of a novel cezrk/rgo nanocomposite for soot oxidation in catalyzed diesel particulate filter. Processes, 9(4). https://doi.org/10.3390/pr9040674
Mendeley helps you to discover research relevant for your work.