Solar radiation is a crucial factor governing biological processes in polar habitats. Containing harmful ultraviolet radiation (UVR), it can pose a threat for organisms inhabiting surface waters of polar oceans. The present study investigated the physiological color change in the obligate sympagic amphipod Apherusa glacialis mediated by red-brown chromatophores, which cover the body and internal organs of the species. Short-term experimental exposure to photosynthetic active radiation (PAR) led to pigment dispersal in the chromatophores, resulting in darkening of the animal. Irradiation in the PAR range (400-700 nm) was identified as the main trigger with high light intensities evoking marked responses within 15 min. After exposure to high PAR, darkness led to a slow aggregation of pigments in the cell center after 24 h. Experiments revealed no statistically significant change in coloration of the animal when exposed to different background colors nor UV radiation. Our results point to a dose- and time-dependent photoprotective role of chromatophores in the amphipod, presuming a shielding effect from harmful radiation in a dispersed state. The reversible nature of the physiological color change enables the species to adapt dynamically to prevailing light conditions and thereby minimize the cost of increased conspicuousness toward visually hunting predators. © 2010 The Author(s).
CITATION STYLE
Fuhrmann, M. M., Nygård, H., Krapp, R. H., Berge, J., & Werner, I. (2011). The adaptive significance of chromatophores in the Arctic under-ice amphipod Apherusa glacialis. Polar Biology, 34(6), 823–832. https://doi.org/10.1007/s00300-010-0938-1
Mendeley helps you to discover research relevant for your work.