Irish edible brown (Himanthalia elongata—sea spaghetti, Alaria esculenta—Irish wakame) and red seaweeds (Palmaria palmata—dulse, Porphyra umbilicalis—nori) were assessed for nutritional (proximate composition; salt; pH; amino acid; mineral and dietary fibre contents); bioactive (total phenolic content (TPC) and in vitro antioxidant activity (DPPH and FRAP)); thermal (thermogravi-metric analysis (TGA)); and technological (water holding capacity (WHC), oil holding capacity (OHC) and swelling capacity (SC)) properties. Red seaweeds had higher (p < 0.05) protein levels, whereas brown seaweeds possessed higher (p < 0.05) moisture, ash, insoluble and total dietary fibre contents. Nori had the lowest (p < 0.05) salt level. Seaweed fat levels ranged from 1 to 2% DW. Aspartic and glutamic acids were the most abundant amino acids. The total amino acid (TAA) content ranged from 4.44 to 31.80%. Seaweeds contained numerous macro (e.g., Na) and trace minerals. The TPC, DPPH and FRAP activities followed the order: sea spaghetti ≥ nori > Irish wakame > dulse (p < 0.05). TGA indicated maximum weight loss at 250◦ C. Dulse had the lowest (p < 0.05) WHC and SC properties. Dulse and nori had higher (p < 0.05) OHC than the brown seaweeds. Results demonstrate the potential of seaweeds as functional food product ingredients.
CITATION STYLE
Mohammed, H. O., O’grady, M. N., O’sullivan, M. G., Hamill, R. M., Kilcawley, K. N., & Kerry, J. P. (2021). An assessment of selected nutritional, bioactive, thermal and technological properties of brown and red Irish seaweed species. Foods, 10(11). https://doi.org/10.3390/foods10112784
Mendeley helps you to discover research relevant for your work.