Isorhamnetin-3-O-rhamnoside was synthesized by a highly efficient three-enzyme (rhamnosyltransferase, glycine max sucrose synthase and uridine diphosphate (UDP)-rhamnose synthase) cascade using a UDP-rhamnose regeneration system. The rhamnosyltransferase gene (78D1) from Arabidopsis thaliana was cloned, expressed, and characterized in Escherichia coli. The optimal activity was at pH 7.0 and 45 °C. The enzyme was stable over the pH range of 6.5 to 8.5 and had a 1.5-h half-life at 45 °C. The Vmax and Km for isorhamnetin were 0.646 U/mg and 181 μM, respectively. The optimal pH and temperature for synergistic catalysis were 7.5 and 25 °C, and the optimal concentration of substrates were assayed, respectively. The highest titer of isorhamnetin-3-O-rhamnoside production reached 231 mg/L with a corresponding molar conversion of 100%. Isorhamnetin-3-O-rhamnoside was purified and the cytotoxicity against HepG2, MCF-7, and A549 cells were evaluated. Therefore, an efficient method for isorhamnetin-3-O-rhamnoside production described herein could be widely used for the rhamnosylation of flavonoids.
CITATION STYLE
Chen, A., Gu, N., Pei, J., Su, E., Duan, X., Cao, F., & Zhao, L. (2019). Synthesis of isorhamnetin-3-O-rhamnoside by a three-enzyme (Rhamnosyltransferase, Glycine Max Sucrose Synthase, UDP-Rhamnose Synthase) cascade using a UDP-rhamnose regeneration system. Molecules, 24(17). https://doi.org/10.3390/molecules24173042
Mendeley helps you to discover research relevant for your work.