Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis

101Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Hyperglycemia in diabetes mellitus (DM) patients is a causative factor for amyloidogenesis and induces neuropathological changes, such as impaired neuronal integrity, neurodegeneration, and cognitive impairment. Regulation of mitochondrial calcium influx from the endoplasmic reticulum (ER) is considered a promising strategy for the prevention of mitochondrial ROS (mtROS) accumulation that occurs in the Alzheimer’s disease (AD)-associated pathogenesis in DM patients. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A has received an increasing amount of attention as a novel candidate with anti-oxidative and neuroprotective effects in AD. Here, we investigated the effect of urolithin A on high glucose-induced amyloidogenesis caused by mitochondrial calcium dysregulation and mtROS accumulation resulting in neuronal degeneration. We also identified the mechanism related to mitochondria-associated ER membrane (MAM) formation. We found that urolithin A-lowered mitochondrial calcium influx significantly alleviated high glucose-induced mtROS accumulation and expression of amyloid beta (Aβ)-producing enzymes, such as amyloid precursor protein (APP) and β-secretase-1 (BACE1), as well as Aβ production. Urolithin A injections in a streptozotocin (STZ)-induced diabetic mouse model alleviated APP and BACE1 expressions, Tau phosphorylation, Aβ deposition, and cognitive impairment. In addition, high glucose stimulated MAM formation and transglutaminase type 2 (TGM2) expression. We first discovered that urolithin A significantly reduced high glucose-induced TGM2 expression. In addition, disruption of the AIP–AhR complex was involved in urolithin A-mediated suppression of high glucose-induced TGM2 expression. Markedly, TGM2 silencing inhibited inositol 1, 4, 5-trisphosphate receptor type 1 (IP3R1)–voltage-dependent anion-selective channel protein 1 (VDAC1) interactions and prevented high glucose-induced mitochondrial calcium influx and mtROS accumulation. We also found that urolithin A or TGM2 silencing prevented Aβ-induced mitochondrial calcium influx, mtROS accumulation, Tau phosphorylation, and cell death in neuronal cells. In conclusion, we suggest that urolithin A is a promising candidate for the development of therapies to prevent DM-associated AD pathogenesis by reducing TGM2-dependent MAM formation and maintaining mitochondrial calcium and ROS homeostasis.

Cite

CITATION STYLE

APA

Lee, H. J., Jung, Y. H., Choi, G. E., Kim, J. S., Chae, C. W., Lim, J. R., … Han, H. J. (2021). Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis. Cell Death and Differentiation, 28(1), 184–202. https://doi.org/10.1038/s41418-020-0593-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free