A smart noise- and RTN-removal method for parameter extraction of CMOS aging compact models

4Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text
This PDF is freely available from an open access repository. It may not have been peer-reviewed.

Abstract

In modern nanometer-scale CMOS technologies, time-zero and time-dependent variability (TDV) effects, the latter coming from aging mechanisms like Bias Temperature Instability (BTI), Hot Carrier Injection (HCI) or Random Telegraph Noise (RTN), have re-emerged as a serious threat affecting the performance of analog and digital integrated circuits. Variability induced by the aging phenomena can lead circuits to a progressive malfunction or failure. In order to understand the effects of the mentioned variability sources, a precise and sound statistical characterization and modeling of these effects should be done. Typically, transistor TDV characterization entails long, and typically prohibitive, testing times, as well as huge amounts of data, which are complex to post-process. In order to face these limitations, this work presents a new method to statistically characterize the emission times and threshold voltage shifts (ΔVth) related to oxide defects in nanometer CMOS transistors during aging tests. At the same time, the aging testing methodology significantly reduces testing times by parallelizing the stress. The method identifies the Vth drops associated to oxide trap emissions during BTI and HCI aging recovery traces while removing RTN and background noise contributions, to avoid artifacts during data analysis.

Cite

CITATION STYLE

APA

Diaz-Fortuny, J., Martin-Martinez, J., Rodriguez, R., Castro-Lopez, R., Roca, E., Fernandez, F. V., & Nafria, M. (2019). A smart noise- and RTN-removal method for parameter extraction of CMOS aging compact models. Solid-State Electronics, 159, 99–105. https://doi.org/10.1016/j.sse.2019.03.045

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free