Pain naturally draws one's attention. However, humans are capable of engaging in cognitive tasks while in pain, although it is not known how the brain represents these processes concurrently. There is some evidence for a cortical interaction between pain- and cognitive-related brain activity, but the outcome of this interaction may depend on the relative load imposed by the pain versus the task. Therefore, we used 3 levels of cognitive load (multisource interference task) and 2 levels of pain intensity (median nerve stimulation) to examine how functional magnetic resonance imaging activity in regions identified as pain-related or cognitive-related responds to different combinations of pain intensity and cognitive load. Overall, most pain-related or cognitive-related brain areas showed robust responses with little modulation. However, during the more intense pain, activity in primary sensorimotor cortex, secondary somatosensory cortex/posterior insula, anterior insula, paracentral lobule, caudal anterior cingulate cortex, cerebellum, and supplementary motor area was modestly attenuated by the easy task and in some cases the difficult task. Conversely, cognitive-related activity was not modulated by pain, except when cognitive load was minimal during the control task. These findings support the notion that brain networks supporting pain perception and cognition can be simultaneously active. © The Author 2006. Published by Oxford University Press. All rights reserved.
CITATION STYLE
Seminowicz, D. A., & Davis, K. D. (2007). Interactions of pain intensity and cognitive load: The brain stays on task. Cerebral Cortex, 17(6), 1412–1422. https://doi.org/10.1093/cercor/bhl052
Mendeley helps you to discover research relevant for your work.