Interaction of solar protons and galactic cosmic radiation with the atmosphere and other materials produces high-energy secondary neutrons from below 1 to 1000 MeV and higher. Although secondary neutrons may provide an appreciable component of the radiation dose equivalent received by space and high-altitude air travelers, the biological effects remain poorly defined, particularly in vivo in intact organisms. Here we describe the acute response of Japanese medaka (Oryzias latipes) embryos to a beam of high-energy spallation neutrons that mimics the energy spectrum of secondary neutrons encountered aboard spacecraft and high-altitude aircraft. To determine RBE, embryos were exposed to 00.5 Gy of high-energy neutron radiation or 015 Gy of reference γ radiation. The radiation response was measured by imaging apoptotic cells in situ in defined volumes of the embryo, an assay that provides a quantifiable, linear dose response. The slope of the dose response in the developing head, relative to reference γ radiation, indicates an RBE of 24.9 (95 CI 13.640.7). A higher RBE of 48.1 (95 CI 30.066.4) was obtained based on overall survival. A separate analysis of apoptosis in muscle showed an overall nonlinear response, with the greatest effects at doses of less than 0.3 Gy. Results of this experiment indicate that medaka are a useful model for investigating biological damage associated with high-energy neutron exposure. © 2009 by Radiation Research Society.
CITATION STYLE
Kuhne, W. W., Gersey, B. B., Wilkins, R., Wu, H., Wender, S. A., George, V., & Dynan, W. S. (2009). Biological effects of high-energy neutrons measured in vivo using a vertebrate model. Radiation Research, 172(4), 473–480. https://doi.org/10.1667/RR1556.1
Mendeley helps you to discover research relevant for your work.