Thanks to the international GNSS service (IGS), which has provided multi-GNSS precise products, multi-GNSS precise point positioning (PPP) time and frequency transfer has of great interest in the timing community. Currently, multi-GNSS PPP time transfer is not investigated with different precise products. In addition, the correlation of the receiver clock offsets between adjacent epochs has not been studied in multi-GNSS PPP. In this work, multi-GNSS PPP time and frequency with different precise products is first compared in detail. A receiver clock offset model, considering the correlation of the receiver clock offsets between adjacent epochs using an a priori value, is then employed to improve multi-GNSS PPP time and frequency (scheme2). Our numerical analysis clarify how the approach performs for multi-GNSS PPP time and frequency transfer. Based on two commonly used multi-GNSS products and six GNSS stations, three conclusions are obtained straightforwardly. First, the GPS-only, Galileo-only, and multi-GNSS PPP solutions show similar performances using GBM and COD products, while BDS-only PPP using GBM products is better than that using COD products. Second, multi-GNSS time transfer outperforms single GNSS by increasing the number of available satellites and improving the time dilution of precision. For single-system and multi-GNSS PPP with GBM products, the maximum improvement in root mean square (RMS) values for multi-GNSS solutions are up to 7.4%, 94.0%, and 57.3% compared to GPS-only, BDS-only, and Galileo-only solutions, respectively. For stability, the maximum improvement of multi-GNSS is 20.3%, 84%, and 45.4% compared to GPS-only, BDS-only and Galileo-only solutions. Third, our approach contains less noise compared to the solutions with the white noise model, both for the single-system model and the multi-GNSS model. The RMS values of our approach are improved by 37.8-91.9%, 10.5-65.8%, 2.7-43.1%, and 26.6-86.0% for GPS-only, BDS-only, Galileo-only, and multi-GNSS solutions. For frequency stability, the improvement of scheme2 ranges from 0.2 to 51.6%, from 3 to 80.0%, from 0.2 to 70.8%, and from 0.1 to 51.5% for GPS-only, BDS-only, Galileo-only, and multi-GNSS PPP solutions compared to the solutions with the white noise model in the Eurasia links.
CITATION STYLE
Ge, Y., Dai, P., Qin, W., Yang, X., Zhou, F., Wang, S., & Zhao, X. (2019). Performance of multi-GNSS precise point positioning time and frequency transfer with clock modeling. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030347
Mendeley helps you to discover research relevant for your work.