Modeling storm surge and inundation in Washington, DC, during Hurricane Isabel and the 1936 Potomac river great flood

16Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Washington, DC, the capital of the U.S., is located along the Upper Tidal Potomac River, where a reliable operational model is needed for making predictions of storm surge and river-induced flooding. We set up a finite volume model using a semi-implicit, Eulerian-Lagrangian scheme on a base grid (200 m) and a special feature of sub-grids (10 m), sourced with high-resolution LiDAR data and bathymetry surveys. The model domain starts at the fall line and extends 120 km downstream to Colonial Beach, VA. The model was used to simulate storm tides during the 2003 Hurricane Isabel. The water level measuring 3.1 m reached the upper tidal river in the vicinity of Washington during the peak of the storm, followed by second and third flood peaks two and four days later, resulting from river flooding coming downstream after heavy precipitation in the watershed. The modeled water level and timing were accurate in matching with the verified peak observations within 9 cm and 3 cm, and with R2 equal to 0.93 and 0.98 at the Wisconsin Avenue and Washington gauges, respectively. A simulation was also conducted for reconstructing the historical 1936 Potomac River Great Flood that inundated downtown. It was identified that the flood water, with a velocity exceeding 2.7 m/s in the downstream of Roosevelt Island, pinched through the bank northwest of East Potomac Park near DC. The modeled maximum inundation extents revealed a crescent-shaped flooding area, which was consistent with the historical surveyed flood map of the event.

Cite

CITATION STYLE

APA

Wang, H. V., Loftis, J. D., Forrest, D., Smith, W., & Stamey, B. (2015). Modeling storm surge and inundation in Washington, DC, during Hurricane Isabel and the 1936 Potomac river great flood. Journal of Marine Science and Engineering, 3(3), 607–629. https://doi.org/10.3390/jmse3030607

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free