The barrier performance of CVD graphene films was determined using a poly(3-hexylthiophene) (P3HT) thin film optical transmission test. P3HT is a semiconducting polymer that photo-oxidatively degrades upon exposure to oxygen and light. The polymer is stable under ambient conditions and indoor lighting, enabling P3HT films to be deposited and encapsulated in air. P3HT's stability under ambient conditions makes it desirable for an initial evaluation of barrier materials as a complimentary screening method in combination with conventional barrier tests. The P3HT test was used to demonstrate improved barrier performance for polymer substrates after addition of CVD graphene films. A layer-by-layer transfer method was utilized to enhance the barrier performance of monolayer graphene. Another set of absorption measurements were conducted to demonstrate the barrier performance of graphene and the degradation mechanism of graphene/P3HT over multiple wavelengths from 400 to 800 nm. The absorption spectra for graphene/polymer composite were simulated by solving Fresnel equations. The simulation results were found to be in good agreement with the measured absorption spectra. The P3HT degradation results qualitatively indicate the potential of graphene films as a possible candidate for medium performance barriers.
CITATION STYLE
Nemani, S. K., & Sojoudi, H. (2018). Barrier Performance of CVD Graphene Films Using a Facile P3HT Thin Film Optical Transmission Test. Journal of Nanomaterials, 2018. https://doi.org/10.1155/2018/9681432
Mendeley helps you to discover research relevant for your work.