The frequency weighting for assessing hand-transmitted vibration exposure is critical to obtaining a true dose-response relationship. Any valid weighting must have a solid theoretical foundation. The objectives of this study are to examine the biodynamic foundation for assessing the vibration exposure and to develop a set of biodynamic methods to formulate the frequency weightings for different anatomical locations of the fingers-hand-arm system. The vibration transmissibility measured on the fingers, hand, wrist, elbow, shoulder, and head was used to define the transmitted acceleration-based (TAB) frequency weighting. The apparent masses measured at the fingers and the palm of the hand were used to construct the biodynamic force-based (BFB) weightings. These weightings were compared with the ISO weighting specified in ISO 5349-1 (2001). The results of this study suggest that the frequency weightings for the vibration-induced problems at different anatomical locations of the hand-arm system can be basically divided into three groups: (a) the weighting for the fingers and hand, (b) the weighting for the wrist, elbow, and shoulder, and (c) the weighting for the head. The ISO weighting is highly correlated with the weighting for the second group but not with the first and third groups. The TAB and BFB finger weightings are quite different at frequencies lower than 100 Hz, but they show similar trends at higher frequencies. Both TAB and BFB finger weightings at frequencies higher than 20 Hz are greater than the ISO weighting.
CITATION STYLE
Dong, R. G., Welcome, D. E., & Wu, J. Z. (2005). Frequency weightings based on biodynamics of fingers-hand-arm system. Industrial Health, 43(3), 516–526. https://doi.org/10.2486/indhealth.43.516
Mendeley helps you to discover research relevant for your work.