A comparison of different oxidative pretreatments on polysaccharide hydrolyzability and cell wall structure for interpreting the greatly improved enzymatic digestibility of sugarcane bagasse by delignification

50Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In order to confirm the contribution of delignification to the increase in lignocellulosic cellulose digestibility, several laboratory oxidative pretreatments under mild conditions, including alkaline-hydrogen peroxide (AP), two-step alkaline/peracetic acid (APAA) and sodium chlorite (SC) pretreatments were employed to achieve selective delignification of sugarcane bagasse and retained most of the hemicelluloses (xylan) in the pretreated solids. Four commercial cellulase cocktails were used to test the enzymatic hydrolyzability of pretreated substrates. Results revealed that delignification indeed could greatly improve the final (120 h) cellulose hydrolysis with relatively high final (120 h) glucan conversion (> 90%) by different cellulase cocktails even if the substrates still had a high hemicelluloses content. However, the xylan conversion seemed to be more greatly dependent on the pretreatments and cellulase cocktails used. AP and APAA pretreatments resulted in the disappearance of middle lamella and liberation of cellulose fibers with significant etching, deformation and fracture of cell wall structure. SC pretreatment greatly modified the sugar bagasse surface morphology to make the surface much coarser. The cell wall also underwent serious fracture and deformation with some middle lamella disappearing. However, no significant alteration on the structure of pure cellulose was observed by SC oxidative pretreatment of filter paper. Oxidative pretreatment might also modify lignin structure and surface properties thus greatly reducing the non-specific adsorption of enzymes. The obtained results strongly support the conclusion that delignification under mild pretreatment condition can be very helpful to improve the enzymatic hydrolysis of lignocellulosic cellulose by commercial cellulase cocktails even if the substrates has a high hemicelluloses content. [Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Han, Y., Bai, Y., Zhang, J., Liu, D., & Zhao, X. (2020). A comparison of different oxidative pretreatments on polysaccharide hydrolyzability and cell wall structure for interpreting the greatly improved enzymatic digestibility of sugarcane bagasse by delignification. Bioresources and Bioprocessing, 7(1). https://doi.org/10.1186/s40643-020-00312-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free