Glutathione S-transferase μ (GSTM1) is mainly known as a detoxification enzyme but it has also been shown to be a negative regulator of apoptosis-related signaling cascades. Recently GSTM1 has been reported to be a significant risk factor for hematological relapse in childhood acute lymphoblastic leukemia, although the underlying mechanism remains largely unknown. Glucocorticoids play a crucial role in the treatment of childhood acute lymphoblastic leukemia, therefore we hypothesized that GSTM1 plays important roles in glucocorticoid-induced apoptotic pathways. To clarify the relationship between GSTM1 and drug resistance, GSTM1 was transfected into a T-acute lymphoblastic leukemia cell line, CCRF-CEM (CEM), and we established the GSTM1-expressing cell lines CEM/M1-4 and CEM/M1-9. Transduction of GSTM1 into CEM selectively decreased cellular sensitivity to dexamethasone in a manner that was independent of glutathione conjugation, but was due to apoptosis inhibition. Dexamethasone-induced p38-MAPK and Bim activation were concomitantly suppressed. Interestingly, nuclear factor kappa b (NF-γB) p50 activity was upregulated in GSTM1-expressing CEM. Inhibition of NF-γB by the pharmacological agent BAY11-7082 greatly enhanced the sensitivity of the GSTM1-expressing CEM to dexamethasone and was accompanied by an increase in Bim expression. Thus, we propose that GSTM1, a novel regulator of dexamethasone-induced apoptosis, causes dexamethasone resistance by suppression of Bim through dual mechanisms of both downregulation of p38-MAPK and upregulation of NF-γB p50. © 2010 Japanese Cancer Association.
CITATION STYLE
Hosono, N., Kishi, S., Iho, S., Urasaki, Y., Yoshida, A., Kurooka, H., … Ueda, T. (2010). Glutathione S-transferase M1 inhibits dexamethasone-induced apoptosis in association with the suppression of Bim through dual mechanisms in a lymphoblastic leukemia cell line. Cancer Science, 101(3), 767–773. https://doi.org/10.1111/j.1349-7006.2009.01432.x
Mendeley helps you to discover research relevant for your work.