Full waveform inversion enables us to obtain high-resolution subsurface images. However, estimating the associated uncertainties is not trivial. Hessian-based method gives us an opportunity to assess the uncertainties around a given estimate based on the inverse of the Hessian, evaluated at that estimate. In this work we study various algorithms for extracting information from this inverse Hessian based on a low-rank approximation. In particular, we compare the Lanczos method to the randomized singular value decomposition. We demonstrate that the low-rank approximation may lead to a biased conclusion.
CITATION STYLE
Izzatullah, M., van Leeuwen, T., & Peter, D. (2019). Bayesian uncertainty estimation for full waveform inversion: A numerical study. In SEG Technical Program Expanded Abstracts (pp. 1685–1689). Society of Exploration Geophysicists. https://doi.org/10.1190/segam2019-3216008.1
Mendeley helps you to discover research relevant for your work.