Proinflammatory cytokines and serotonergic homeostasis have both been implicated in the pathophysiology of major psychiatric disorders. We have demonstrated that activation of p38 mitogen-activated protein kinase (MAPK) induces a catalytic activation of the serotonin transporter (SERT) arising from a reduction in the SERT Km for 5-hydroxytryptamine (5-HT). As inflammatory cytokines can activate p38 MAPK, we hypothesized that they might also activate neuronal SERT. Indeed, Interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNF-α) stimulated serotonin uptake in both the rat embryonic raphe cell line, RN46A, and in mouse midbrain and striatal synaptosomes. In RN46A cells, IL-1β stimulated 5-HT uptake in a dose- and time-dependent manner, peaking in 20 min at 100 ng/ml. This was abolished by IL-1ra (20 ng/ml), an antagonist of the IL-1 receptor, and by SB203580 (5 μM), a p38 MAPK inhibitor. TNF-α also dose- and time-dependently stimulated 5-HT uptake that was only partially blocked by SB203580. Western blots showed that IL-1β and TNF-α activated p38 MAPK, in an SB203580-sensitive manner. IL-1β induced an SB203580-sensitive decrease in 5-HT Km with no significant change in Vmax. In contrast, TNF-α stimulation decreased 5-HT Km and increased SERT V max. SB203580 selectively blocked the TNF-α-induced change in SERT Km. In mouse midbrain and striatal synaptosomes, maximal stimulatory effects on 5-HT uptake occurred at lower concentrations (IL-1β, 10 ng/ml; TNF-α, 20 ng/ml), and over shorter incubation times (10 min). As with RN46A cells, the effects of IL-1β and TNF-α were completely (IL-1β) or partially (TNF-α) blocked by SB203580. These results provide the first evidence that proinflammatory cytokines can acutely regulate neuronal SERT activity via p38 MAPK-linked pathways. © 2006 Nature Publishing Group. All rights reserved.
CITATION STYLE
Zhu, C. B., Blakely, R. D., & Hewlett, W. A. (2006). The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology, 31(10), 2121–2131. https://doi.org/10.1038/sj.npp.1301029
Mendeley helps you to discover research relevant for your work.