Generation of an E. coli platform strain for improved sucrose utilization using adaptive laboratory evolution

22Citations
Citations of this article
112Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Sucrose is an attractive industrial carbon source due to its abundance and the fact that it can be cheaply generated from sources such as sugarcane. However, only a few characterized Escherichia coli strains are able to metabolize sucrose, and those that can are typically slow growing or pathogenic strains. Methods: To generate a platform strain capable of efficiently utilizing sucrose with a high growth rate, adaptive laboratory evolution (ALE) was utilized to evolve engineered E. coli K-12 MG1655 strains containing the sucrose utilizing csc genes (cscB, cscK, cscA) alongside the native sucrose consuming E. coli W. Results: Evolved K-12 clones displayed an increase in growth and sucrose uptake rates of 1.72- and 1.40-fold on sugarcane juice as compared to the original engineered strains, respectively, while E. coli W clones showed a 1.4-fold increase in sucrose uptake rate without a significant increase in growth rate. Whole genome sequencing of evolved clones and populations revealed that two genetic regions were frequently mutated in the K-12 strains; the global transcription regulatory genes rpoB and rpoC, and the metabolic region related to a pyrimidine biosynthetic deficiency in K-12 attributed to pyrE expression. These two mutated regions have been characterized to confer a similar benefit when glucose is the main carbon source, and reverse engineering revealed the same causal advantages on M9 sucrose. Additionally, the most prevalent mutation found in the evolved E. coli W lineages was the inactivation of the cscR gene, the transcriptional repression of sucrose uptake genes. Conclusion: The generated K-12 and W platform strains, and the specific sets of mutations that enable their phenotypes, are available as valuable tools for sucrose-based industrial bioproduction in the facile E. coli chassis.

Cite

CITATION STYLE

APA

Mohamed, E. T., Mundhada, H., Landberg, J., Cann, I., MacKie, R. I., Nielsen, A. T., … Feist, A. M. (2019). Generation of an E. coli platform strain for improved sucrose utilization using adaptive laboratory evolution. Microbial Cell Factories, 18(1). https://doi.org/10.1186/s12934-019-1165-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free