An Investigation of Damage Mechanism Induced by Earthquake in a Plate Girder Bridge Based on Seismic Response Analysis: Case Study of Tawarayama Bridge under the 2016 Kumamoto Earthquake

15Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper reports a damage survey and seismic analysis of a bridge. In the first part, the damage survey of some bridges that were affected by the 2016 Kumamoto Earthquake was discussed. Among these bridges, the Tawarayama Bridge, which is a plate girder bridge located very close to an active fault line, was particularly considered. This bridge incurred severe damage because of the earthquakes' epicenters very close to the bridge. The damage mechanism that can occur in this type of bridge was elucidated. During the damage survey, parts of Tawarayama Bridge were examined to determine the damage in order to examine the factors of occurrence and damage mechanism. In the second part, the seismic responses of Tawarayama Bridge were analyzed using ABAQUS software, and beam elements were applied for the structural members. Firstly, the time-history responses were analyzed using both longitudinal and transverse direction earthquake ground motions separately and simultaneously to investigate the dynamic response of the bridge. Both undamped and damped conditions were considered. For the dynamic response analysis, the recorded earthquake acceleration data of Ozu Station were applied for both undamped and damped conditions considering both east-west (EW) and north-south (NS) directions simultaneously and the damped condition for these directions separately. In addition, a damped model was analyzed by applying design earthquake input data obtained from the Japanese Seismic Design Specifications for Highway Bridges. Consequently, five cases were established for seismic response analysis. Subsequently, the seismic responses of Tawarayama Bridge were investigated, and the behavior of the lower lateral members was examined considering the observed buckling of these members during the damage survey. The field survey and dynamic response analysis indicate that the buckling design of the lower lateral members should be considered in the future design of bridges.

Cite

CITATION STYLE

APA

Mya Nan Aye, Kasai, A., & Shigeishi, M. (2018). An Investigation of Damage Mechanism Induced by Earthquake in a Plate Girder Bridge Based on Seismic Response Analysis: Case Study of Tawarayama Bridge under the 2016 Kumamoto Earthquake. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/9293623

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free