Dimethyl dicarbonate (DMDC), a food additive, can be added to a variety of foods as a preservative. This study aimed to evaluate the inhibitory effects of DMDC on Geotrichum citri-aurantii in vitro and in vivo, as well as the potential antifungal mechanism. In vitro experiments showed that 250 mg/L DMDC completely inhibited the growth of G. citri-aurantii and significantly inhibited spore germination by 96.33%. The relative conductivity and propidium iodide (PI) staining results showed that DMDC at 250 mg/L increased membrane permeability and damaged membrane integrity. Malondialdehyde (MDA) content and 2, 7-Dichlorodihydrofluorescein diacetate (DCHF-DA) staining determination indicated that DMDC resulted in intracellular reactive oxygen species (ROS) accumulation and lipid peroxidation. Scanning electron microscopy (SEM) analysis found that the mycelia were distorted and the surface collapsed after DMDC treatment. Morphological changes in mitochondria and the appearance of cavities were observed by transmission electron microscopy (TEM). In vivo, 500 mg/L DMDC and G. citri-aurantii were inoculated into the wounds of citrus. After 7 days of inoculation, DMDC significantly reduced the disease incidence and disease diameter of sour rot. The storage experiment showed that DMDC treatment did not affect the appearance and quality of fruits. In addition, we found that DMDC at 500 mg/L significantly increased the activity of citrus defense-related enzymes, including peroxidase (POD) and phenylalanine ammonia-lyase (PAL). Therefore, DMDC could be used as an effective method to control citrus sour rot.
CITATION STYLE
Liu, S., Zhang, D., Wang, Y., Yang, F., Zhao, J., Du, Y., … Long, C. (2022). Dimethyl Dicarbonate as a Food Additive Effectively Inhibits Geotrichum citri-aurantii of Citrus. Foods, 11(15). https://doi.org/10.3390/foods11152328
Mendeley helps you to discover research relevant for your work.