Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids

20Citations
Citations of this article
105Readers
Mendeley users who have this article in their library.

Abstract

Ruminants (and milk production) contribute to global climate change through enteric methane emissions (EME), and any attempt to reduce them is complicated by the fact that they are difficult and expensive to measure directly. In the case of dairy cows, a promising indirect method of estimating EME is to use the milk fatty acid profile as a proxy, as a relationship exists between microbial activity in the rumen and the molecules available for milk synthesis in the mammary gland. In the present study, we analyzed the detailed fatty acid profiles (through gas chromatography) of a large number of milk samples from 1,158 Brown Swiss cows reared on 85 farms with the aim of testing in the field 2 equations for estimating EME taken from a published meta-analysis. The average estimated methane yield (CH4 emission per kg of dry matter intake, 21.34 ± 1.60 g/kg) and methane intensity (per kg of corrected milk, 14.17 ± 1.78 g/kg), and the derived methane production (CH4 emissions per day per cow, 357 ± 109 g/d) were similar to those previously published. Using data from model cheese makings from individual cows, we also calculated estimated methane intensity per kilogram of fresh cheese (99.7 ± 16.4 g/kg) and cheese solids (207.5 ± 30.9 g/kg). Dairy system affected all EME estimates. Traditional dairy farms, and modern farms including corn silage in the TMR exhibited greater estimated methane intensities. We found very wide variability in estimated EME traits among different farms within dairy system (0.33 to 0.61 of total variance), suggesting the need to modify the farms' feeding regimens and management practices to mitigate emissions. Among the individual factors, parity order affected all estimated EME traits excepted methane yield, with an increase from first lactation to the following ones. Lactation stage exhibited more favorable estimated EME traits during early lactation, concomitant with the availability of nutrients from body tissue mobilization for mammary synthesis of milk. Our results showed a coherence between the EME traits estimated from the analysis of milk fatty acids and the expectations according to current knowledge. Further research is needed to validate the results obtained in this study in other breeds and populations, to assess the magnitude of the genetic variation and the potential of these phenotypes to be exploited in breeding programs with the aim to mitigate emissions.

Cite

CITATION STYLE

APA

Bittante, G., Cecchinato, A., & Schiavon, S. (2018). Dairy system, parity, and lactation stage affect enteric methane production, yield, and intensity per kilogram of milk and cheese predicted from gas chromatography fatty acids. Journal of Dairy Science, 101(2), 1752–1766. https://doi.org/10.3168/jds.2017-13472

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free