In order to improve the teaching efficiency of English teachers in classroom teaching, the target detection algorithm in deep learning and the monitoring information from teachers are used, the target detection algorithm of deep learning Single Shot MultiBox Detector (SSD) is optimized, and the optimized Mobilenet-Single Shot MultiBox Detector (Mobilenet-SSD) is designed. After analyzing the Mobilenet-SSD algorithm, it is recognized that the algorithm has the shortcomings of large amount of basic network parameters and poor small target detection. The deficiencies are optimized in the following partThrough related experiments of student behaviour analysis, the average detection accuracy of the optimized algorithm reached 82.13%, and the detection speed reached 23.5 fps (frames per second). Through experiments, the algorithm has achieved 81.11% in detecting students' writing behaviour. This proves that the proposed algorithm has improved the accuracy of small target recognition without changing the operation speed of the traditional algorithm. The designed algorithm has more advantages in detection accuracy compared with previous detection algorithms. The optimized algorithm improves the detection efficiency of the algorithm, which is beneficial to provide modern technical support for English teachers to understand the learning status of students and has strong practical significance for improving the efficiency of English classroom teaching.
CITATION STYLE
Zhang, W., & Xu, Q. (2022). Optimization of College English Classroom Teaching Efficiency by Deep Learning SDD Algorithm. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/1014501
Mendeley helps you to discover research relevant for your work.