In this study, we examined the role of estrogen receptors (ER) in aryl hydrocarbon receptor (AHR)-dependent transactivation. Chromatin immunoprecipitation assays showed that AHR agonists differentially induced recruitment of ERα to the AHR target genes CYP1A1 and CYP1B1. Cotreatment with 17β-estradiol significantly increased β-naphthoflavone (BNF)- and 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced recruitment of ERα to CYP1A1, whereas 3,3′-diindolylmethane induced promoter occupancy of ERα at CYP1A1 that was unaffected by cotreatment with 17β-estradiol. Cyclical recruitment of AHR and ERα to CYP1A1 was only observed in cells treated with BNF. Stable and subtype-specific knockdown of ERα or ERβ using shRNA showed that suppression of ERα significantly reduced, whereas knockdown of ERβ significantly enhanced, AHR agonist-induced Cyp1a1 expression in HC11 mouse mammary epithelial cells. AHR agonist-induced Cyp1b1 expression was reduced by ERβ knockdown but unaffected by ERα knockdown. The siRNA-mediated knockdown of ERα in MCF-7 human breast cancer cells did not affect 2,3,7,8-tetrachlorodibenzo-p-dioxin-dependent regulation of CYP1A1 and CYP1B1 mRNA expression. In agreement with our in vitro findings in the HC11 cells, ERα knockout mice exhibit reduced BNF-dependent induction of Cyp1a1 mRNA. These results establish ligand- and promoter-specific influences on the cyclical recruitment patterns for AHR and show ER species-, subtype-, and promoter-specific modulation of AHR-dependent transcription. Copyright © 2009 American Association for Cancer Research.
CITATION STYLE
Wihlén, B., Ahmed, S., Inzunza, J., & Matthews, J. (2009). Estrogen receptor subtype- and promoter-specific modulation of aryl hydrocarbon receptor-dependent transcription. Molecular Cancer Research, 7(6), 977–986. https://doi.org/10.1158/1541-7786.MCR-08-0396
Mendeley helps you to discover research relevant for your work.