The development of wood decay caused by 12 major root-rot and trunk-rot fungi was investigated in vitro with sapwood extracted from nine ornamental and landscape hardwood and conifer species native to southern temperate regions of North America, Europe, and the lower Mississippi Delta. Wood decay rates based on dry weight loss for 108 host tree-wood decay fungi combinations were compared at 21 8C over 1-year and 2-year incubation periods in the absence of tree-resistance mechanisms. Strains of Armillaria mellea, Ganoderma lucidum, and Heterobasidion annosum exhibited the highest decay potential in most tree species tested. The order of fungi causing the greatest decay varied over time as a result of temporal changes in decay-rate curves. Relative wood durability or resistance to decay generally was greater in gymnosperm than in angiosperm wood types. Quercus nuttallii, Fraxinus pennsylvanica, and Quercus lyrata sustained the highest levels of decay by all fungi. Northern white cedar (Thuja occidentalis) sapwood was most resistant to decay by all rot-fungi tested, sustaining only limited weight loss after 1 and 2 years of decay, although sapwood of Pinus taeda, Liquidambar styraciflua, and Platanus occidentalis had relatively low levels of decay after 2 years. These results in combination with data from portable decay-detection devices provide useful information for the management of tree breakages or failures resulting from wood decay fungi in hazardous landscape trees. Some potential landscaping applications for tree evaluations, risk assessments, and selections for tree-replacement plantings are discussed.
CITATION STYLE
Baietto, M., & Dan Wilson, A. (2010). Relative in vitro wood decay resistance of sapwood from landscape trees of southern temperate regions. HortScience, 45(3), 401–408. https://doi.org/10.21273/hortsci.45.3.401
Mendeley helps you to discover research relevant for your work.