Listeria monocytogenes strains are known to harbour plasmids that confer resistance to sanitizers, heavy metals, and antibiotics; however, very little research has been conducted into how plasmids may influence L. monocytogenes’ ability to tolerate food-related stresses. To investigate this, a library (n = 93) of L. monocytogenes plasmid sequences were compared. Plasmid sequences were divided into two groups (G1 and G2) based on a repA phylogeny. Twenty-six unique plasmid types were observed, with 13 belonging to each of the two repA-based groups. G1 plasmids were significantly (p < 0.05) smaller than G2 plasmids but contained a larger diversity of genes. The most prevalent G1 plasmid (57,083 bp) was observed in 26 strains from both Switzerland and Canada and a variety of serotypes. Quantitative PCR (qPCR) revealed a >2-fold induction of plasmid-contained genes encoding an NADH peroxidase, cadmium ATPase, multicopper oxidase, and a ClpL chaperone protein during growth under salt (6% NaCl) and acid conditions (pH 5) and ProW, an osmolyte transporter, under salt stress conditions. No differences in salt and acid tolerance were observed between plasmid-cured and wildtype strains. This work highlights the abundance of specific plasmid types among food-related L. monocytogenes strains, the unique characteristics of G1 and G2 plasmids, and the possible contributions of plasmids to L. monocytogenes tolerance to food-related stresses.
CITATION STYLE
Hingston, P., Brenner, T., Hansen, L. T., & Wang, S. (2019). Comparative analysis of listeria monocytogenes plasmids and expression levels of plasmid-encoded genes during growth under salt and acid stress conditions. Toxins, 11(7). https://doi.org/10.3390/toxins11070426
Mendeley helps you to discover research relevant for your work.