pH has an important effect on the physiological activity of eosinophilic microorganisms. Therefore, this study used excess sludge produced by the mixed treatment of leachate and municipal sewage to explore the impact of different sludge initial pH on microbial biochemical reactions associated with the performance of excess sludge dehydration. Shake-flask tests were performed using inoculated microorganisms and fresh excess sludge in 500 mL Erlenmeyer flasks at a ratio of 1:4, with the addition of 2 g/L S0 and 6 g/L FeS2 as energy sources. Erlenmeyer flasks were shaken for 72 h at 180 rpm and 28◦ C, in a reciprocating constant homeothermic oscillating water-bath. Results show that the specific resistance to filtration (SRF) of the bioleached excess sludge decreased from (1.45~6.68) × 1012 m/kg to (1.21~14.30) × 1011 m/kg and the sedimentation rate increased from 69.00~73.00% to 81.70~85.50%. The SRF decreased from 1.45 × 1012 m/kg to 1.21 × 1011 m/kg and the sedimentation rate increased from 69.00% to 85.00%, which both reached the highest level when the initial pH of the excess sludge was 5 and the bioleaching duration was 48 h. At this time, the rates of pH reduction and oxidative redox potential (ORP) reached the highest values (69.67% and 515 mV, respectively). Illumina HiSeq PE250 sequencing results show that the dominate microbial community members were Thiomonas (relative abundance 4.59~5.44%), which oxidize sulfur and ferrous iron, and Halothiobacillus (2.56~3.41%), which oxidizes sulfur. Thus, the acidic environment can promote microbial acidification and oxidation, which can help sludge dewatering. The presence of dominant sulfur oxidation bacteria is the essential reason for the deep dehydration of the bioleached sludge.
CITATION STYLE
Lin, S., Shi, M., Wang, J., Zhu, H., & Wen, G. (2020). Influence of sludge initial ph on bioleaching of excess sludge to improve dewatering performance. Coatings, 10(10), 1–21. https://doi.org/10.3390/coatings10100989
Mendeley helps you to discover research relevant for your work.