A large class of emerging actuation devices and materials exhibit strong hysteresis characteristics during their routine operation. For example, when piezoceramic actuators are operated under the influence of strong electric fields, it is known that the resulting input-output behavior is hysteretic. Likewise, when shape memory alloys are resistively heated to induce phase transformations, the input-output response at the structural level is also known to be strongly hysteretic. This paper investigates the mathematical issues that arise in identifying a class of hysteresis operators that have been employed for modeling both piezoceramic actuation and shape memory alloy actuation. Specifically, the identification of a class of distributed hysteresis operators that arise in the control influence operator of a class of second order evolution equations is investigated. In Part I of this paper we introduce distributed, hysteretic control influence operators derived from smoothed Preisach operators and generalized hysteresis operators derived from results of Krasnoselskii and Pokrovskii. For these classes, the identification problem in which we seek to characterize the hysteretic control influence operator can be expressed as an ouput least square minimization over probability measures defined on a compact subset of a closed half-plane. In Part II of this paper, consistent and convergent approximation methods for identification of the measure characterizing the hysteresis are derived.
CITATION STYLE
Banks, H. T., Kurdila, A. J., & Webb, G. (1997). Identification of hysteretic control influence operators representing smart actuators part I: Formulation. Mathematical Problems in Engineering, 3(4), 287–328. https://doi.org/10.1155/S1024123X97000586
Mendeley helps you to discover research relevant for your work.