The formation of mineral scale is a complex problem during the oilfield operations. Scale inhibitors are widely used to prevent salt precipitation within reservoirs, in downhole equipment, and in production facilities. The scale inhibitors not only must have high effectiveness to prevent scale formation, but also have good adsorption–desorption characteristics, which determine the operation duration of the scale inhibitors. This work is focused on the development of a new scale inhibitor for preventing calcium carbonate formation in three different synthetic formation waters. Scale inhibition efficiency, optical density of the solution, induction time of calcium carbonate formation, corrosion activity, and adsorption–desorption ability were investigated for the developed scale inhibitor. The optimum concentration of hydrochloric acid in the inhibitor was determined by surface tension measurement on the boundary layer between oil and the aqueous scale inhibitor solution. The results show that the optimum mass percentage of 5 % hydrochloric acid solution in the inhibitor was in the range of 8 % to 10 %. The new scale inhibitor had high efficiency at a concentration of 30 mg/L. The results indicate that the induction period for calcium carbonate nucleation in the presence of the new inhibitor was about 3.5 times longer than the value in the absence of the inhibitors. During the desorption process at reservoir conditions, the number of pore volumes injected into the carbonate core for the developed inhibitor was significantly greater than the volume of a tested industrial inhibitor, showing better adsorption/desorption capacity.
CITATION STYLE
Khormali, A., & Petrakov, D. G. (2016). Laboratory investigation of a new scale inhibitor for preventing calcium carbonate precipitation in oil reservoirs and production equipment. Petroleum Science, 13(2), 320–327. https://doi.org/10.1007/s12182-016-0085-6
Mendeley helps you to discover research relevant for your work.